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INTRODUCTION

The purpose of this paper is to clarify why we should apply Hamel bssis in order to define
the dimension of Banach spaces when some infinite cardinality of a basis is encountered and
to prove the dimension of any infinite dimensional Banach space X is at least as great as
the cardinality c of the continum. The proof we have presented in part IITis quite an indepen-

dent one comparing the suggestion given in I. which is to try through the space L~ of
bounded sequences with the suprimum norm.

A Hamel basis for a linear space L is defined to be a linearly independent subset H which
spars L. Hence any element in L can be expressed in terms of a finite linear combination of
the elements in H. Since we have as a fundamental fact that every linear space has a Hamel

basis and as an easy consquence that any two Hamel basis of a linear space are in one-to-one
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correspondence, the cardinality of the set of a Hamel basis of a linear space L can be served
as the (Hamel) dimension of L.

A Schauder basis for a linear metric space M is a sequence {a,} such that for any vector

oo
xe M there exists a unique sequence {k,} of scalars such that >} kpa,=x. The difference
n=1

in two conceptions, Hamel basis and Schauder basis, does not occur in any finite dimen-
sional normed linear space. However in the infinite dimensional normed linear spaces, two
conceptions become different. The Schauder basis allows infinite sums while in the Hamel
basis only finite sums occur 2.

The following theorm will signify that why it is reasonable for us to admit Hamel basis

instead Schauder basis to define the dimension of Banach spaces in general.

THEOREM For a normed linear space X to admit a countable Schauder basis, X
must be separable in the strong topology.
PROOF. Let x¢ X, and {a;} be a countable Schauder basis. Then
i || & — Yaa | =0.
that is, for arbitrary ¢ > 0, there is a number no such that
le— 2zall <%
=1
where x; are scalars.
Now we consider a countable set of elements in X such that to each of it corresponds the

sequence {r;} of rational scalars in its expression with respect to the basis {a;} . For a suitable

sequence {r;} we can have

70 7o 70
”fv—grﬂi <1 x'—i;xiai Il =+ I_Z=l i —ril 1l gl
€ e _
) < -2' + 7 — &
This proves the theorem.
II

The property of completeness of normed linear spaces encounter with these two basis
differently and hence we shall arrive at quite a strong restriction to the dimension of Banach
space (part III).

We consider the Banach space C[0,1], the space of continuous functions on the closed unit
interval I=[0,1] with the sup. norm, and we shall prove the following theorem for the

comparison with Theorem in part III.
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THEOREM C[0,1] has a countable Schauder basis.
PROOF. Letry, i = 1,2,3,+0-- with r; = 0, ra = 1 be a dense subset of [0,1]. We define

a countable basis (a;) in C[0,1] as suggested in the figures.
Now let us define the sequence {k;} of the scalars
for arbitrary given fe C[0,1] by

ky=f@)=1(0)

ky=f@r)=1Q).
To go on inductively, we set s, = k,a, + k.a,, and
then define

Fos = F1rs) — 8y(1s), weeoee
Thus for arbitrary n, we set S, = 2 ki
Then

s, &) =f@), for t =1r,ry 1,
and f= ; ki
Let g;(t)=f(r), ’thene gi € C[0,17%, the duel space.
Suppose f@) = g}l ka; (t) = z; hia; (1),
then ;1 (k; — hi) a;(¢) = 0 for all e [0, 1]

0=y, ;(lﬂi — h)a;)= 12; (kihi) g, (a;) = k; — h;.
Hence f; = h; for all i = 1,2,

This proves the uniqueness and completes the proof.

IT1

The purpose of this part is to see how much different phenomenon would appear concern-
ing with the Hamel basis for the space C[0,1]. However we shall prove it as more general

case in an arbitrary normal linear compete space X.

THEOREM If X is an infinite dimensional Banach space. Then dim X > ¢, the
cardinality of the continum.

PROOF. We have to show that there always exists an element in X that does not belong
to a subspace generated by any countable linearly independent vectors in X.

Let {an}zew be a sequence of linearly independent elements in X. We define inductively a
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sequence {g,} of positive real numbers as follows:
If dn =d (/lna'm Vn—l)y where Vn-—l = [a’l""va’n—lj,
the subspace generated by a1,+++,a5-1 and d is the metric induced from the norm, then we

choose p1p+1 by

d,
Un+1 “ A1 “ S?

with the conversion that Vo = {0}, and 111 = 1.

n

Let s, = Y pua, then the sequence {sn} of series absolutely converges. In fact
1=

oy

“ Un+1 a‘n+1 ” S 3

and on the other hand,

e
dil == d(yﬂa’"? Vﬂ_]) S d(lulla'lbo) = I] Pna’n ” S el

3 ’
dn—l dn—l' dl — H y ”
whence dy < 75+ < gt S gaer = et
For arbitrary n,
Sa<zlBl— a1+ + o+ ),

and hence

- . L_.&
;dz‘—“alnl l—BIICLlH

This proves {s,} absolutely converges, and therefore {s»} new is a Cauchy sequence in X.

Hence it has a limit point, say

Lo =18, = 21 1.
b

We shall show that xp does not belong to V, the sequence of X generated by the set {a;} ;zu.
Suppose ¥, ¢V, and for arbitrary small number :>>0. Welet Ue= {xE X || x—xo || <&}
Then there exists an integer N such that for arbitrary given n > N,

S, = Z}ly,-a,,-sV” and Sy e U‘.
=
On the other hand there exists an integer m such that

Xo = 3 & (uniquely expressed), where &; are scalars.
i=1

Now
l@o—s, Il =1l _Zlfiai — L #itki I
: =
= || §1 & — m)a; "_=§+]/‘iai Il
If we set
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Yo = ;1 (&; — p) @, than y, € V,,, and hence

(*) H LTy — S, H = H Yo — . Z 1il; || = “ Yo — Um+1m+1 — . Z 10 ”
i=m+] i=m+2
n
2 “ ?Jo - ,um+1am+1 [] - || _Z+2/‘iai ”
i=m

Since 99 € Vi, according to the sequence {y;} we have constructed,

” ?/o - ,um+1a'm+1 ” gd(ﬂm-ﬂa’nwh Vm) = dm+1’

and

|5 I < 5 M el < Gotr g Do Ly Gy

i=m+2 i=m+2 3 3 3
.
since
15

du S 31’ du—t'

Thus

dm+1 Jn-mit — dm+1

n 1
Il 1};1/1;'(14 I < 2 '—3W< 2
Combining this inequality together with (&)

dm+l — dm+1

2 2
This contradicts the fact that we have chosen sufficiently large N so that || x9—s, || <e

H Lo — Sy H = dm+1 -

for arbitrary small positive number e. The refore xo must not belong to V. This completes

the proof.
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