A Note on Semi-Developable Spaces

Moo Ha Woo*

개 요

본 논문의 중요 결과는 open semi-developable 부분 공간들의 합은 만약 그합공간이 F_σ -screenable 이라면 semi-developable 이 된다. 그리고 semi-development 를 갖고 있는 Lindelof 공간의 임의 부분 공간도 Lindelof 공간이 되고, point-finite semi-developable 공간에서는 Lindelof 와 separability는 같다.

A space X is developable if there is a sequence $\Delta = \{g_n | n \in \mathcal{N}\}$ of open covers of X such that $\{\operatorname{St}(x,g_n) | n \in \mathcal{N}\}$ is a local base at x, for each $x \in X$. Recently Charles C. Alexander [1] introduced a semi-developable space as a generalization of the developable space and showed some properties of the space.

The principal results of this paper are as follows. The union X of open semi-developable subspaces is semi-developable if X is F_{σ} -screenable. A Lindelöf space with a semi-development is hereditarily Lindelöf. In a point-finite semi-developable space, the Lindelöf property is equivalent to separability.

The notation and terminology used in this paper are to follow those of J. C. kelley [4] mainly. N is the set of positive integers.

DEFINITION 1. [1] A semi-development for a space X is a sequence $\{g_n | n \in \mathcal{N}\}$ of (not necessarily open) covers of X such that $\{\operatorname{St}(x, g_n) | n \in \mathcal{N}\}$ is a neighborhood base at x, for each $x \in X$.

A space is semi-developable space if and only if there exists a semi-development for the space.

^{*} Instructor of the Mathematic Department.

THEOREM 2. A Lindelöf space with a semi-development is hereditarily Lindelöf.

PROOF. Let X be a Lindelöf semi-developable space. A semi-developable space is hereditary (p. 278 in [1]). Since a Lindelöf space is hereditarily Lindelöf if and only if each open subspace is Lindelöf (P. 144 in [2]). Let U be an open set in X and $\triangle = \{g_n | n \in \mathcal{N}\}$ be a semi-development for X. If we take $U_n = \overline{[St(U', g_n)]'}$, then $U = \bigcup_{n=1}^{\infty} U_n$.

For, let $y \in \bigcup_{m=1}^{\infty} U_n$, there is an integer m such that $y \in U_m$ (i.e., $y \in [St(U', g_m)]'$). Suppose that $y \notin U$, then we have $St(y, g_m) \subset St(U', g_m)$. Therefore, we obtain $St(y, g_m) \cap [St(U', g_m)]' = \phi$. Thus, $y \notin [St(U', g_m)]'$. This is contradict to $y \in [St(U', g_m)']$.

For each $y \in U$, there is an integer m such that $\operatorname{St}(y, g_m) \subset U$. Therefore we have $\operatorname{St}(y, g_m) \cap U' = \phi$. For such m, we obtain $y \notin \operatorname{St}(U', g_m)$. Thus, $y \in \overline{[\operatorname{St}(U', g_m)]'} = U_m$.

Since each Un is closed, hence Un is Lindelöf. Thus each open subspace is Lindelöf. Consequently X is hereditarily Lindelöf.

With the aid of Proposition 1.9 of [1] we have the following.

COROLLARY 3. Every Lindelöf semi-developable space is hereditarily separable.

A topological space is F_{σ} -screenable if every open cover has a σ -discrete closed refinement which covers the pace [3]

THEOREM 4. The union X of open semi-developable subspaces is semi-developable if X is F_{σ} -screenable.

PROOF. Let $X = \bigcup_{\alpha \in \mathscr{S}} U_{\alpha}$, where U_{α} be an open semi-developable subspaces with a semi-development $\triangle_{\alpha} = \{g_n[\alpha] \mid n \in \mathscr{N}\}$. Since X is F_{α} -screenable, there is a σ -discrete closed refinement $\mathscr{L} = \bigcup_{n=1}^{\infty} \mathscr{L}_n$ of $\{U_{\alpha} \mid \alpha \in \mathscr{A}\}$. For each $B \in \mathscr{L}_n$, there is a fixed element $\alpha(B) \in \mathscr{A}$ such that $B \subset U_{\alpha(B)}$.

Let $U_n(B) = X - \bigcup \{B^* | B^* \in \mathcal{L}_n, B^* \neq B\}$, \mathcal{U}_n , $m(B) = \{U_n(B) \cap G | G \in g_m[\alpha(B)]\}$ and \mathcal{U}_n , $m = \{U | U \in \mathcal{U}_n, m(B), B \in \mathcal{L}_n\} \cup \{Q_n\}$ where $Q_n = X - \bigcup \{B | B \in \mathcal{L}_n\}$. Then U_n , m is a cover of X for each n, $m \in \mathcal{N}$ and we show that $\{\mathcal{U}_n, m \in \mathcal{N}\}$ is a semi-development for X.

If $z \in X$ there is an integer $n \in \mathcal{N}$ with some $B \in \mathcal{L}_n$ such that $z \in B$. Consequently if O is any open set containing z there is some $m \in \mathcal{N}$ such that $z \in Int St (z, g_m[\alpha(B)])$ $\subset St (z, g_m[\alpha(B)] \subset O \cap U_{\alpha(B)}$. By construction z is not contained in any element of

$$\mathcal{U}_n, m(B^*)$$
 for any $B^* \in \mathcal{L}_n$ such that $B_* \neq B$.
Since Int St $(z, \mathcal{U}_n, m) = \text{Int St } (z, \mathcal{U}_n, m [B])$

$$= \text{Int } (U_n [B] \cap \text{St } (z, g_m [\alpha(B)])$$

$$= U_n (B) \cap \text{Int St } (z, g_m [\alpha(B)]) \ni z.$$

Thus $z \in \text{Int St } (z, \mathscr{U}_n, \mathscr{U}_n) \subset \text{St}(z, \mathscr{U}_n, \mathscr{U}_n) = \text{st } (z, \mathscr{U}_n, \mathscr{U}_n, \mathscr{U}_n) \subset \text{st } (z, g_m[\alpha(B)]) \subset O.$

For each $k, l \in \mathbb{N}$, we have $z \in \text{Int St } (z, U_k, l)$. If there is some B such that $z \in B \in \mathcal{L}_n$, then we obtain $z \in \text{Int St } (z, \mathcal{U}_k, l)$ by the abvoe way. If there is not a B such that $z \in B \in \mathcal{L}_n$, then $z \in Q_n$. Since Q_n is an open set, thus we have $z \in \text{Int St } (z, \mathcal{U}_k, l)$. Hence $\{\text{St } (z, \mathcal{U}_k, l) \mid k, l \in \mathbb{N}\}$ is a neighborhood base at z, for each $z \in X$.

DEFINITION 5. [3] A totological space X is a *semi-stratifiable* space if, to each open set $U \subset X$, one can assign a sequence $\{U_n\}_{n=1}^{\infty}$ of closed subsets of X such that

(a)
$$\bigcup_{n=1}^{\infty} U_n = U$$

(b) $U_n \subset V_n$ whenever $U \subset V$.

With the aid of Theorem 1.3 of [1] and Corollary 1.4 of [3], we have the following relationship between semi-developable spaces and semi-stratifiable spaces.

LEMMA 6. A space is semi-developable T_0 -space if and only if it is a first countable semi-stratifiable T_1 -space.

A topological space is x_1 -compact if every uncountable subset has a limit point. By applying the above Lemma and Theorem 2.8 of [3], we obtain the following theorem:

THEOREM 7. In a semi-developable T₀-space, the following are equivalent (1) X is Lindelöf, (2) X is hereditarily separable, and (3) X is x_1 ,-compact.

Alexander [1] showed that a separable space with a point-finite semi-development is hereditarily separable.

COROLLARY 8. In a point -finite semi-developable T_0 -space, the Lindelöf property is equivalent to separability.

References

- C. C. Alexander, Semi-developable spaces and Quotient image of matric spaces, Pac, J. of Math. Vol. 37, No. 2, 1971, pp. 277~293.
- 2. N. Bourbaki, Elements of mathematics part 1, Addison wesley Publishing Co., 1966.
- 3. G. D. Creede, Concerning semi-stratifiable spaces, Pac. J. of Math. Vol. 32, No. 1, 1970), pp. 20~27.
- 4. J. L Kelly, General Topology, New York, Van Nostrand, 1955.